|
In six-dimensional geometry, a cantellated 6-simplex is a convex uniform 6-polytope, being a cantellation of the regular 6-simplex. There are unique 4 degrees of cantellation for the 6-simplex, including truncations. == Cantellated 6-simplex== 3, 3, 3, 3\\3\end\right\} |- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|5-faces||35 |- |bgcolor=#e7dcc3|4-faces||210 |- |bgcolor=#e7dcc3|Cells||560 |- |bgcolor=#e7dcc3|Faces||805 |- |bgcolor=#e7dcc3|Edges||525 |- |bgcolor=#e7dcc3|Vertices||105 |- |bgcolor=#e7dcc3|Vertex figure||5-cell prism |- |bgcolor=#e7dcc3|Coxeter group||A6, (), order 5040 |- |bgcolor=#e7dcc3|Properties||convex |} 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cantellated 6-simplexes」の詳細全文を読む スポンサード リンク
|